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a b s t r a c t

Natural and man-made brittle layers embedded in a weaker matrix and subjected to layer-parallel
extension typically develop an array of opening-mode fractures with a remarkably regular spacing. This
spacing often scales with layer thickness, and it decreases as extension increases until fracture saturation
is reached. Existing analytical one-dimensional (1-D) ‘full-slip’ models, which assume that interfacial slip
occurs over the entire length of the fracture-bound blocks, predict that the ratio of fracture spacing to
layer thickness at saturation is proportional to the ratio of layer tensile to interface shear strength (T/s).
Using 2-D discontinuum mechanical models run for conditions appropriate to layered rocks, we show
that fracture spacing at saturation decreases linearly with decreasing T/s ratio, as predicted by 1-D
models. At low T/s ratios (ca. <3.0), however, interfacial slip is suppressed and the heterogeneous 2-D
stress distribution within fracture-bound blocks controls further fracture nucleation, as predicted by an
existing 2-D ‘fracture infill criterion’. The applicability of the two theories is hence T/s ratio dependent.
Our models illustrate that fracture spacing in systems permitting interfacial slip is not necessarily an
indicator of fracture system maturity. Fracture spacing is expected to decrease with increasing over-
burden pressure and decreasing layer tensile strength.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Opening-mode fractures are extremely common phenomena in
natural and man-made materials. In geosciences they are referred to
as joints (Mandl, 2005) and in engineering they are termed cracks
(Nairn, 2000). Inmechanically layeredmaterials, suchas sedimentary
rock sequences or laminates, these fractures typically form perpen-
dicular to the layer boundaries and are often best, or exclusively,
developed in the stiffer and more brittle layers (Fig. 1a), although
under some circumstances fractures may first form in the weaker
beds (Bourne, 2003). Studies of these fractures in layered rocks
(Ladeira and Price, 1981; Huang and Angelier, 1989; Narr and Suppe,
1991; Ji and Saruwatari, 1998; Ji et al., 1998; Gillespie et al., 2001;
Iyer and Podladchikov, 2009), physical experiments (Garrett and
Bailey, 1977; Mandal et al., 1994; Wu and Pollard, 1995) and numer-
ical models (Tang et al., 2008) have revealed that fracture spacing
increases with layer thickness. A wide variety of mechanisms have
been suggested for the origin and scaling relations of layer-confined
opening-mode fractures (Bourne, 2003;Mandl, 2005). In the present
study, we focus on one of the most commonly used boundary
conditions for investigating the mechanics of opening-mode frac-
tures in layered materials: fracturing due to layer-parallel extension
þ353 1 716 2607.
).
l Sciences, Leobener Strasse,

ll rights reserved.
under constant layer-normal stress. For this case, experimental work
has revealed that fracture spacing decreases approximately as the
inverse of the applied layer-parallel strain (Manders et al., 1983;
Parvizi and Bailey, 1978). This is because new fractures form in-
betweenexisting fractures, aprocess referred to as sequential infilling
(Bai et al., 2000; Bai and Pollard, 2000b). Eventually no new fractures
form, irrespectiveof any further increase inapplied strain, a condition
called fracture saturation (Wu and Pollard, 1995; Bai et al., 2000; Bai
and Pollard, 2000b; Dharani et al., 2003).

The earliest andmost commonly invokedmechanical explanation
for fracture saturation is that the fracture spacing reaches a critical
value (relative to the layer thickness, t) at which maximum tensile
stresses within the fracture-bound blocks are too low to yield further
fracture. Thisexplanation is basedontheconceptof frictional coupling
between the fractured layer and the ambient material or ‘matrix’
(Fig.1b). The layer/matrix interface has a frictional strength s given by
the Coulomb limit stress snm, where sn is the interfacial normal stress
and m is the interfacial friction coefficient (Mandl, 2005). The static
balance ofmechanical forces requires that a constant interfacial shear
stress, s, is balanced by a constant layer-parallel average stress
gradient, dsx/dx (Fig. 1b). If slip occurs over the entire length of
a fracture-bound block (full-slip conditions), the layer-parallel normal
stress (sx) distribution between two traction free fractures is trian-
gular, with the maximum tensile stress occurring in the block centre
(Fig. 1b). This central maximum tensile stress is, however, limited by
the tensile strength of the layer, T. The critical fracture spacing (sc) is
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Fig. 1. Natural example of layer-confined opening fractures and illustrations of theories for fracture saturation. (a) Field example of rock joints (opening fractures) developed within
limestone beds (pale) embedded in mudrocks (grey) exposed in Lilstock Bay, Somerset, UK. Rock hammer (circled) is 0.29 m long. (b) Full-slip, or frictional coupling, model (Kelly and
Tyson, 1965; Price, 1966). A constant interfacial shear stress sx is balanced by a layer-parallel normal stress gradient dsx/dx. The normal stress is limited by the layer tensile strength T
which leads to a critical fracture spacing sc below which no further fracture can occur. The dashed lines indicate that the minimum fracture spacing is 0.5sc. (c) Compressive stress
criterion (Dharani et al., 2003), or stress-transition theory (Bai et al., 2000; Bai and Pollard, 2000b). If no interfacial slip occurs, a region of compressive layer-parallel normal stress sxx
(grey areas) that extends across the central area of the fracture-bound block develops at a fracture spacing to thickness ratio (s/t) of w1.0 (modified after Bai and Pollard, 2000a,b).
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therefore defined as the spacing below which the maximum tensile
stress can not reach the layer strength, i.e. sc¼ Tt/s (Fig. 1b).

The above equation is known as Price’s model in the geologic
literature (Price,1966;Mandl, 2005) and as the KellyeTyson equation
in material sciences (Kelly and Tyson,1965; Tripathi and Jones,1998).
For laminates and fibre composites, it is widely applied to estimate
interfacial shear strength from fragment length measurements
(Tripathi and Jones, 1998). This full-slip model is the most commonly
applied end-member of a suite of models referred to as shear lag
models (Cox, 1952; Hobbs, 1967; Piggott, 1978; Lloyd et al., 1982;
Berthelot et al., 1996; Ji and Saruwatari, 1998; Ji et al., 1998;
Berthelot, 2003; Jain et al., 2007). Different shear lag models vary in
the assumedmodes of transfer of tensile stress across the layer/matrix
interface, e.g. the full-slip model is the limit solution (at infinite layer
extension; e/N) for a cohesionless frictional interface. Although
differing in detail, shear lag models all predict that sequential infill
fractures should formmid-way between existing fractures, such that
the range of fracture spacing at a particular strain varies by a factor of
two, i.e. 0.5sc< s< sc. The average fracture spacing is hence given by
s ¼ 0:75sc, an expression sometimes referred to as theOhsawaet al.’s
equation (Ohsawa et al., 1978; Tripathi and Jones, 1998).

Despite their successful application inmaterial science (Berthelot
et al., 1996; Berthelot, 2003), the limitations of shear lag models are
manifest in a variety of ways. For example, whilst physical experi-
ments without any clear evidence for interfacial slip can attain frac-
ture saturation (Garrett and Bailey, 1977), shear lag models with
inhibited interfacial slip (s/N) predict fracturing ad infinitum (Bai
et al., 2000). In addition, they are unable to account for fracture
clustering in ‘corridors’ (Olson, 2004) or ‘crack families’ (Groves et al.,
1987) and for the formation of splay, i.e. branch, fractures. This is
because the feature common to all shear lag models is that they are
based on stresses averaged over the thickness of the layer, i.e. they are
effectively 1-D treatments. Consideration of layer-normal sxx varia-
tions and the near crack tip stress field on fracturing is thus absent.

An alternative explanation for fracture saturation in the absence
of interfacial slip is that segment-bounding fractures become
sufficiently closely spaced such that a layer-parallel compressive
normal stress arising between the existing fractures prevents the
insertion of new fractures (Altus and Ishai, 1986). This is referred to
as compressive stress criterion (CSC; Dharani et al., 2003) or stress-
transition theory (Bai et al., 2000; Bai and Pollard, 2000b). The CSC
is based on 2-D numerical (Bai et al., 2000; Bai and Pollard, 2000b;
Korach and Keer, 2002; Li and Yang, 2007) and analytical
(Schoeppner and Pagano, 1999; Adda-Bedia and Amar, 2001)
modelling of the stress distribution between two predefined frac-
tures. For a fracture spacing to layer thickness ratio of approxi-
mately one, this modelling reveals that a region of compressive
layer-parallel normal stress sxx develops right across the central
area of the fracture-bound block (Bai et al., 2000; Bai and Pollard,
2000b, Fig. 1c). This central compression belt will inhibit further
fracturing, although numerical analysis indicates that tensile
stresses adjacent to the interface (Fig. 1c) may be sufficient to cause
propagation of vertical fractures across this belt from interface-
flaws mid-way between the two existing fractures (Bai and Pollard,
2000a). Fracture saturation occurs when a limiting fracture spacing
to thickness ratio is reached, at which fractures can not propagate
across the compressive belt. For identical layer and matrix elastic
properties, this limit is s/t¼ 0.546, such that smin/t for a fracture set
at complete infilling would be 0.273 (Bai and Pollard, 2000a). This
predicted range is referred to as the 2-D infill criterion.
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Whilst the CSC theory provides a rationale for fracture saturation
without interfacial slip,unlike theshear lagmodels, it is limitedbecause
it doesnot include suchslip. Experimental studiesonfibres (Huangand
Young,1995; van den Heuvel et al., 1997; Tripathi and Jones,1998) and
laminates (Berthelot, 2003), for example, have shown that during
extension interfacial slip, or, in the presence of cohesion, interface
debonding, occurs. Analysis of plume lines on joint faces also suggests
that interfacial, e.g. bedding parallel, slip or matrix yielding must
sometimes occur during joint growth (Savalli and Engelder, 2005).
Moreover, and importantly, the CSC theory does not account for
observations of fracture saturation at s/t ratios in excess of one.

The above considerations suggest that a fuller explanation of
fracture scaling relationships for the wide range of naturally
occurring and man-made interface properties requires a more
complete model definition, ideally one which incorporates behav-
iours explained by both theories illustrated in Fig. 1. Here we
describe discontinuum numerical models that explicitly replicate
fracturing of a layer in response to layer-parallel extension and to
2-D stress distributions within fracture-bound blocks. We consider
a range of layer/matrix interface properties and compare ourmodel
results with those of shear lag and CSC theories.
2. Methods

2.1. Model geometry and boundary conditions

In our discontinuummodels the layer andmatrix are represented
as an assemblage of bonded circular particles (Fig. 2; Potyondy and
Cundall, 2004). The bonds between particles comprising the central
layer fail if their strength is exceeded and the linkage of those broken
bonds leads to the formation of fractures. The particles and bonds do
not represent sand grains and cement, respectively; they merely
provide a numericalmaterial thatmimics themechanical response of
brittle materials (see Appendix A for details). A drawback of dis-
cretizations using randomly placed particles is that the simulated
fractures are jagged, whereas rock joints are often remarkably
smooth. This aesthetic shortcoming will in the future be resolved by
the generation of progressively higher resolution models, with
smaller particle sizes. Discontinuummodels with regular (e.g. cubic)
particle packing also permit the formation of straight fractures, but
Fig. 2. Numerical model and its boundary conditions used for modelling rock joints. Dark
particles are lateral boundaries to which a horizontal velocity is applied. Black lines joining
joint’ contacts (see inset). sy, vertical applied boundary stress. ux, horizontal applied bound
would, however, inhibit the formationofnon-planar fractures,which,
as shown later, are an important feature in some of our models.

In all our models the first fracture forms wherever the layer is
weakest (discontinuum models have heterogeneous strength
distributions; seeAppendixA)whentheaverage tensile stresswithin
the layer reachesw6.5 MPa (see Fig.A1), a tensile strength typical for
sedimentary rock (e.g. limestone, sandstone; Lockner, 1995). Failure
within thematrix is prevented so thatmatrix yielding and fracturing
does not affect fracture within the central layer. Layer-matrix inter-
face geometries and frictional properties are represented through
a so-called ‘smooth-joint’ contact model (Itasca Consulting Group,
Inc, 2008; Mas Ivars et al., 2008) that implicitly replaces the irreg-
ular geometry of an interface between domains within a particle
assemblage with a planar discontinuity (Fig. 2). After uniaxial
confinement this three-layer model is extended horizontally with
a velocity low enough to assure quasi-static conditions, while
maintaining a constant vertical stress of �5 MPa which, under
lithostatic conditionsand foranoverburdendensityof2500 kg/m3, is
equivalent to a depth of w200 m (Fig. 2); our results are however
applicable to a broader range of confining pressure and tensile
strength because the controlling factor is T/s (see below). Further
details of the modelling are given in Appendix A.

Wepresent results from fourmodelswith non-cohesive interfaces
with friction coefficients m of 0.2, 0.3, 0.5 and 0.8 and onemodel with
a welded interface. All models attain a finite strain of 0.008 and
fracture saturation. The friction coefficients used in this study cover
the wide range reported by Byerlee (1978) for confining pressures of
<5 MPa, at which the large variation in friction is due to variation in
surface roughness. Although experimental constraints on the fric-
tional properties of lithological interfaces (e.g. bedding planes)
arevery sparse,weconsider that thebroadrange, and inparticular the
lower values, used in this study are appropriate. A range of interfacial
shear strengths was achieved by varying the interfacial friction
coefficient, rather than the confining pressure, because the latter
would also cause variations in both layer elastic properties and
strength due to their pressure dependence (e.g. Schöpfer et al., 2009).
The role of the interfacial friction in our models is simply to limit the
interfacial shearstress.Whether this isachieved inanatural systemby
interfacial slipand/orplasticityof thematrix layersdependsonawide
range of extrinsic and intrinsic parameters. In fact, if the interfacial
shear strength isgreater than theshearstrengthof thematrix then the
and light grey particles comprise the matrix and central layer, respectively, and black
particle centres are bonds and bold horizontal lines at the layer interface are ‘smooth-
ary velocity. t, thickness of central layer.



Fig. 3. Average layer-parallel normal stress and interfacial shear stress distribution in discontinuum model with low interface friction coefficient (m¼ 0.3) at (a) e¼ 0.075% and (b)
e¼ 0.415%. (i) Locations of broken bonds (black) and sliding ‘smooth-joint’ contacts (grey). The sense of shear is indicated with half-arrows for one fracture-bound block. (ii) Average
horizontal, or layer-parallel, stress in fracture layer (sx) normalised by the minimum tensile strength (Tmin). Black dots are model stress data and grey lines are best-fit shear lag
model profiles. (iii) Interface shear stress to normal stress ratio (sxy/syy) normalised by interface friction coefficient (m). Black and grey dots are ‘smooth-joint’ contact stress data of
the lower and upper interface, respectively. Solid lines are best-fit shear lag model solutions. Positions of fractures and slip to no-slip regions are indicated with vertical solid and
dashed lines, respectively. See Appendix C for details regarding the best-fit shear lag model. Animations of graphical representation for this and a selection of other models are
provided as an electronic supplement.
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strength of the (plastic) matrix in shear is the controlling factor in
determining fracture spacing (Kelly and Tyson, 1965).

2.2. Graphical representation

The model evolutions and their differences can be explored by
generating the three types of plot presented in Fig. 3 for different
models at different stages of their evolution. Animations of these
plots of the five different models presented in this paper are
provided as an electronic supplement. Each of these three forms of
output are outlined below.

(i) Broken bonds and interface slip diagram: shows the locations of
sliding ‘smooth-joint’ contacts and broken bonds. If sliding
occurs on a ‘smooth-joint’ contact, it is drawn as a horizontal
line at the contact location, with a length equal to the area of
the ‘smooth-joint’. A sliding contact is defined as a contact
where jFsj > 0:99jFnjm, where Fn and Fs are the contact-
normal force and shear-force component vectors (expressed in
the 'smooth-joint' coordinate system). Each broken bond, or
‘crack’, is drawn as a black line (Figs. 3 and 4) half-way
between the two initially bonded particles, with a length equal
to the average diameter of the two particles and perpendicular
to a line joining the particle centres.

(ii) Horizontal normal stress plot: shows the average horizontal
normal stress (sx) distributionwithin the central layer (as defined
by Eq. (C.1)). The stress is normalised by the minimum layer
tensile strength Tmin, defined as the stress at which the first
fracture forms (Fig. A1). If the layer strength and horizontal stress
(sxx) distributions were homogeneous, then subsequent frac-
turing would occur at the same stress level. However, the
particulate nature of the model makes the material intrinsically
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heterogeneous, so that the average horizontal normal stress can
exceed Tmin, i.e. 1.0 in the graph. Most importantly, if the
heterogeneous sxx distribution controls fracture, as in the high
interfacial strengthmodels, then fracturecanoccurat stress levels
which are significantly lower than the average layer strength.

(iii) Interfacial shear stress plot: shows the interfacial shear stress
distributions, expressed as the ratio of shear to normal stress,
sxy/syy, for each ‘smooth-joint’ contact, with clockwise shear
couples taken to be positive (Fig. 3). In case of the cohesion-
less, frictional interface models the maximum value of this
ratio is limited by the friction coefficient, m. We therefore plot
sxy/syy/m (i.e. sxy=ðmsyyÞ), so that the data plotted range from
�1.0 to 1.0. Values of �1.0 or 1.0 hence indicate that anti-
clockwise and clockwise interfacial slip occurs, respectively.

3. Results

The fracture spacing and interfacial slip evolution of the dis-
continuum models with various interfacial friction coefficients are
shown in Figs. 4 and 5. The discontinuum model results are
compared with predictions based on a shear lag model with
interfacial slip which, in the limit, yields a finite fracture spacing
equivalent to the full-slip model (see Appendices B and C).

3.1. Low interfacial friction models (m¼ 0.2 and m¼ 0.3)

For m¼ 0.2 and m¼ 0.3 (Fig. 5) there is good agreement between
discontinuum and shear lag model predictions for the evolution of
fracture spacing and reasonable agreement for the proportion of
interfacial slip (which is defined as the ratio of the sum of sliding
‘smooth-joint’ contact areas to the sum of all ‘smooth-joint’ contact
areas). This similarity of results occurs because the dominant
process in both models is mid-point fracture (Figs. 3 and 4).

The stress evolution in the low friction models is in close agree-
ment with theoretical considerations (Fig. 3; see also Appendix B).
Once a fracture forms the average layer-parallel normal stress at this
location drops to zero and interfacial shear stresses develop adjacent
to the fracture. If the interfacial shear stressexceeds the shear strength,
interfacial slip commences. In each fracture-bound block the shear
sense issymmetricacross ahorizontalmirrorplane throughthecentre
of the layer and a verticalmirror plane through the centre of the block
(Fig. 3a). The length of the slip regions decreases with increasing
interfacial shear strength (see first row in Fig. 4) and the vertical shear
stress gradient is balanced by a horizontal normal stress gradient,
which is constant in the slip regions. Fracture saturation in the low
friction models occurs when slip occurs along the entire interface as
predicted by the full-slip model (compare Figs. 1b and 3b).

3.2. High interfacial friction models (m¼ 0.5 and m¼ 0.8)

For m¼ 0.5 and m¼ 0.8 (Fig. 5) there is poor agreement between
discontinuum and shear lag model predictions (the deviation from
the shear lag prediction is greater for the higher friction model).
The discontinuum modelling yields a much larger range of fracture
spacings during system evolution than the factor of 2 variation
predicted by the shear lag model and it produces a much lower
average spacing at saturation.

Both of these discrepancies arise because 2-D heterogeneous
stress distributions within fracture-bound blocks, which are unac-
counted for in the 1-D shear lag model, exert important controls on
fracturing in the discontinuummodels with high interface frictions.
Fracture saturation in the m¼ 0.8 discontinuummodel arises largely



Fig. 6. Details of 2-D stress distribution within the high interfacial friction (m¼ 0.8) model. (a) Development of a curved fracture (Groves et al., 1987; Hu et al., 1993) adjacent to an
existing straight fracture within a fracture-bound block with a spacing to thickness ratio of w1.9. (b) Development of an infill fracture (Bai and Pollard, 2000a) within a fracture-
bound block with a spacing to thickness ratio of w0.9. The infill fracture propagates again at e¼ 0.62% to form a through-going fracture (not shown). Particles within the central
layer are coloured according to their least compressive stress (s1) in (a) and according to horizontal normal stress component (sxx) in (b). Matrix particles are dark grey for clarity.
Green lines show direction of minimum, i.e. greatest compressive, principal stress. White and grey lines are locations of broken bonds and ‘smooth-joint’ contacts, respectively. Stars
are fracture nucleation points. e, model strain.
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by the same process as described for the 2-D infill criterion
(compare Figs.1c and6b), i.e. infill fractures cannot propagate across
a belt of compressive stress at the centre of a fracture block once
a critical s/t ratio is achieved (this critical s/t is <1.0 in our models).
However, the wider range of fracture spacing than the factor of 2
variationprediction bymid-point fracture throughout the evolution
of the m¼ 0.5 and m¼ 0.8 discontinuum model is due to the
formation of new fractures close to existing fractures in blocks with
s/t> 1 (Fig. 4). Neither the shear lag nor CSC theories predict these
new fractures, but their formation is consistent with the commonly
observed clustering of fractures in real layered materials. In our
models, the new fractures nucleate at interfaces and either propa-
gate across the layer to form through-going fractures or link with
existing fractures to form splays/branches (Fig. 6). They formwhen
themaximumprincipal (least compressive) stress near the interface
is located in close proximity to the existing fractures (Groves et al.,
1987; Hu et al., 1993), rather than mid-way between them as pre-
dicted by 1-D analyses. The new fractures propagate along curved
principal stress trajectories that are convex towards the earlier
fracture (Fig. 6a). Such curved fractures are indeed observed in some
laminates (Groves et al., 1987; Hu et al., 1993).

3.3. Reconciliation of fracture saturation theories

Fracture spacings at saturation as predicted by the 1-D full-slip
model (Price’s or KellyeTyson equation), the compressive stress
criterion (CSC) and the 2-D infill criterion, and as observed in dis-
continuum modelling, are compared in Fig. 7. There is good
agreement between the full-slip model and the discontinuum
models at friction coefficients of m< 0.4 (Fig 7a). At higher friction
coefficients, however, the discontinuummodelling predicts awider
range of fracture spacing than the full-slip model and a lower
average spacing. Instead, the discontinuum model spacings here
overlap with predictions of the alternative 2D infill criterion, which
is thus shown to become more appropriate as welded interface
conditions are approached. Moreover, and in contrast to the unre-
alistic zero spacing predicted by the full-slip model, the dis-
continuum model predicts spacings at saturation in close
agreement with the 2-D infill criterion at T/s ratios approaching
zero (i.e. a welded interface; Fig 7b).

We presume that the T/s value limiting the validity of 1-D
approximations will be greatly controlled by the size of existing
flaws and may therefore vary widely as a function of material
heterogeneity (Tang et al., 2008).
4. Discussion

Distinct Element Method modelling of the fracturing of a brittle
layer embedded in a weaker matrix provides a rationale for the
wide range of fracture characteristics observed in nature (e.g. Sagy
and Reches, 2006). With increasing layer-parallel extension, new
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fractures form in-between existing fractures, a process referred to
as sequential infilling, until no new fractures form when fracture
saturation is reached. The resulting fracture distributions are often
scale-dependent, with approximately regular fracture spacing
which scales with layer thickness, features which are typical of
natural and man-made fracture systems. Fracture spacing at satu-
ration does, however, vary with the layer tensile to interface shear
strength ratio (T/s) and is therefore not, as previous work has
suggested, an indicator of fracture system maturity or saturation
(all models shown in the lowest row in Fig. 4 are saturated).
Conclusions about fracture saturation arising from numerical
models with predefined fractures that do not explicitly permit
fracture nucleation, propagation and associated interfacial slip (Bai
and Pollard, 2000b) can, therefore, be misleading. Variations in
layer tensile to interface shear strength ratios (T/s) can also lead to
changes in both fracture spacing populations and fracture geome-
tries. At high T/s ratios fractures are straight, fracture spacings are
quasi-periodic and fracture spacing to layer thickness ratios at
saturation range down to ca. 2 (Fig. 7), values which are typical of
many fracture systems. At lower T/s, by contrast, fractures become
more curved and branched, clustered fracture patterns emerge and
fracture spacing to layer thickness ratios at saturation are often less
than 1. Whilst existing analytical one-dimensional (1-D) full-slip
models are in good agreement with higher T/s models, at lower T/s
interfacial slip is suppressed and 2-D stress distributions within
fracture-bound blocks controls further fracture nucleation. Detailed
analysis of the precise nature of fracture distributions and shape,
and how they change with mechanical parameters, such as T/s ratio
and layer properties, is beyond the scope of this study but could
have significant scientific and practical benefits. Our modelling
shows, for example, that fracture branching and clustering is not
necessarily an indicator of either dynamic crack propagation (Sagy
and Reches, 2006) or sub-critical crack growth (Olson, 2004).
Branches and curved fractures in our models nucleate at the layer
interface and propagate towards existing straight fractures,
a scenario which was envisaged, but not investigated, in a study on
fracture stepping across interfaces (Cooke and Underwood, 2001).
Perhaps the analysis of plume lines on natural joint faces may
reveal whether branched fracture geometries arise from either
fracture bifurcation or fracture linkage.
Our models reproduce many aspects of the geometry and
evolution of fracture patterns in single layers and also provide
a basis for considering the potential impact of some other factors:

(i) Confiningpressureandstrength: in this studywehaveexploredthe
impact of interfacial friction coefficient on fracturing in a three-
layer system under a constant confining pressure (Fig. 7a),
defined by a constant layer-normal stress of �5MPa which is
equivalent to w200m depth for lithostatic conditions and an
overburden density of 2500 kg/m3. In a horizontally layered
sequence the interfacial shear strength s of cohesionless inter-
faces is the product of the vertical stress sv and the friction coef-
ficient m, such that jsj ¼ svm. We expect, therefore, that similar
relations to those shown in Fig. 7 will arise for constant m and for
variable sv, which under lithostatic conditions is given by gh
(where g is the specific weight of a rock column extending down
to a depth of h). If porewater is present then the effective vertical
stress is given by s0v ¼ svð1� lvÞ, where lv is the ratio of pore
fluid pressure pf to vertical stress sv (Sibson,1998; Mandl, 2005).
Under normal hydrostatic conditions (lv¼ 0.4) an effective
vertical stress of�5MPawould hence be equivalent to a depth of
340 m. The above relationships mean that for a constant inter-
facial friction coefficient and layer tensile strength, a decrease in
fracture spacing at saturation is expected with increasing depth;
the actual depth depends on overburden density and pore pres-
sure (Fig. 8). At certain depths, however, confining pressure
inhibits the formation of opening-mode fractures and there is
a transition toshear fracturing (Sibson,1998;RamseyandChester,
2004; Schöpfer et al., 2007). By the same token, in a sequence
which is deformed at a constant confining pressure a systematic
decrease of fracture spacing will accompany a decrease in layer
strength, until at a certain strength a transition to shear failure
will occur (Fig. 8).

(ii) Interface cohesion: the layer/matrix interfaces in our models
are cohesionless, a simplification which cannot always be
justified in a natural system. We expect that cohesion will
decrease fracture spacing and that Price’s full-slip model could
potentially overestimate saturation fracture spacing. Indeed,
our ongoing discontinuum modelling of cohesive interfaces
suggests that the layer-parallel normal stress profiles (Fig. 3(ii))



Fig. 8. Tensile strength vs. effective overburden pressure graphs for interfacial friction coefficients m¼ 0.3 and 0.5 illustrating (i) layer tensile to interface shear strength (T/s)
contours (which are equivalent to the ratio of maximum, or critical, fracture spacing to layer thickness under full-slip conditions, sc/t; Fig. 1b), (ii) regimes for which our dis-
continuum models suggest that 1-D full-slip predictions are not applicable (T=s(3; see Fig. 7), and (iii) the transition from pure opening-mode fracturing to hybrid extensional-
shear fractures, which according to the 2-D Griffith criterion occurs when �s0v > 3T (e.g. Sibson, 1998). The effective overburden pressure is s0v ¼ svð1� lvÞ, with lv¼ pf/sv being
the ratio of pore fluid pressure pf to vertical stress sv. Two depth scales are given, one for lithostatic conditions (lv¼ 0.0) and one where pore water is present and under normal
hydrostatic conditions (lv¼ 0.4). The dots in each graph illustrate the tensile strength and overburden pressure of our discontinuum models. These graphs are strictly speaking only
valid for systems with cohesionless interfaces subjected to layer-parallel extension.
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exhibit a central convex upwards region (corresponding to the
intact interface) which at the cusps exhibit a steeper slope than
in the slip region (Piggott, 1997). The tensile stress within this
central region can be higher than for a cohesionless interface
and can hence cause further fracturing.

(iii) Elastic properties and layer/matrix thicknesses: our modelling
verifies Price’s full-slip model for cohesionless interfaces and
high layer tensile to interface shear strength ratios (T/s). Because
Price’s model is solely based on a balance of mechanical forces
under interfacial full-slip conditions, elastic properties and
matrix thicknesses have no impact on fracture spacing at satu-
ration (the detailed evolution of fracture spacing is theoretically
dependent on these properties). The 2-D stress distribution
within fracture-bound blocks under no-slip conditions is,
however, sensitive to the elastic properties (Bai and Pollard,
2000b) and layer/matrix thicknesses. Consequently we expect
slightly different results at low T/s ratios for models with
different elastic properties and thickness ratios, though future
work is required to verify the nature of these dependencies.

(iv) Multilayers: our models are for simple three-layer systems
rather than the more complex multilayered systems often
found in nature. Geological studies suggest, for example, that
fracture pattern scaling may be hierarchical perhaps reflecting
the stacking patterns and mechanical amalgamation of frac-
tured layers (e.g. Gillespie et al., 2001). Experimental work on
composite materials has shown that a fracture in one layer can
raise the stress in the adjacent layers and hence can lead to
fracture alignment, in particular when the matrix layers are
thin (van den Heuvel et al., 1997). The fracture-related inter-
actions between different mechanical layers in a layered
sequence and their impact on fracture systematics could be
the subject of future studies using the same basic modelling
approach described in this paper.
5. Conclusions

Our discontinuum models of fracture of single layers with various
interfacial shear strengths suggest the following principal conclusions.
1. The validity and consequent applicability of Price’s full-slip
model, and similar 1-D approximations, depends on the ratio of
layer tensile strength to interface shear strength (T/s).
(a) High T/s ratios (ca.>3.0 in ourmodels) promote interfacial slip

andyieldresults thatprovideagoodfit toa1-Dshear lagmodel.
(b) At lower strength ratios interfacial slip is suppressed and

the heterogeneous 2-D stress distribution within fracture-
bound blocks controls further fracture nucleation (curved
fractures, infill fractures).

2. In systemswith high T/s ratios the range of fracture spacing varies
by a factor of two because the dominant fracture mode is mid-
point fracturing.Systemswith lowerstrengthratiosexhibit awider
range of fracture spacing with a bimodal spacing distribution due
to the formation of curved fractures close to existing fractures.

3. The compressive stress criterion (CSC), or stress-transition
theory, appears not to be valid since further infill fractures
nucleate at the layer/matrix interfaces and propagate through
the centre of the fracture-bound blocks, hence the 2-D infill
criterion is more appropriate.

4. Fracture saturation spacing decreases non-linearly with
increasing interface shear strength towards values of less than 1
and therefore decreases with increasing effective layer-normal
stress, e.g. overburden pressure.

5. In a layered sequence that permits interfacial slip, fracture
spacing is not an indicator of fracture system maturity, or
saturation, i.e. a fracture spacing to layer thickness ratio of >1
does not imply that the system is unsaturated.
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Notation

d thickness of matrix layers
Ef Young’s modulus of fractured layer
e model strain
em matrix strain
ep pre-strain
g average layer-parallel normal stress gradient
Gm shear modulus of matrix
L half-length of fracture-bound block
Lc critical half-length of fracture-bound block
m fraction of no-slip region
s fracture spacing
t thickness of fractured layer
T tensile strength of fractured layer
a fraction of area occupied by particles
b load transfer parameter
m interfacial friction coefficient
sp pre-stress
sx average layer-parallel normal stress in fractured layer
sxx layer-parallel normal stress component
spxx layer-parallel normal stress component of particles
sy interfacial normal stress
s interfacial shear strength
sx interfacial shear stress

Appendix A. Distinct Element Method

A.1. Particle properties and boundary conditions

The modelling in this study was performed with the PFC-2D soft-
ware, which implements the Distinct Element Method (DEM). The
models were generated using the sample generation procedure
detailed in Potyondy and Cundall (2004). The model boundaries are
rigid and frictionless. Particles have a uniform size distribution with
a particle size range of 0.0015e0.0025 m and comprise a model area
fraction of 0.84. All particle contacts have a contact friction coefficient
of 0.5 and are assigned a linear contact model. Particle and bond
Young’s moduli are equal and are 50.00 and 16.67 GPa within the
central layer andmatrix, respectively. The particle and bond normal to
shear stiffness ratio is 2.5 and the modulus-stiffness scaling relations
given in Potyondy and Cundall (2004) are applied. Bonds between
particles comprising the matrix have infinite strength and bonds
within the central layer have a tensile and shear strength of 20 MPa.
Despite the constant bond strength parameters, variations in local
strengtharise fromchanges in localparticlepacking,with the resulting
heterogeneity being an intrinsic feature of bonded-particle models.
Accelerating motion is damped with a damping constant of 0.7. After
a bonded-particlemodel is generatedwith an initial isotropic stress of
�0.1 MPa, contacts betweenparticles comprising the layer andmatrix
are assigned a ‘smooth-joint’model, which simulates the behaviour of
a horizontal interface regardless of the local contact plane orientations
along the interface (Fig. 2). The area of each ‘smooth-joint’ contact is
scaled so that the sumof all contact areas is equal to the total length of
the interface represented as ‘smooth-joints’. The model is then
confined vertically, with zero interfacial friction, until the desired
confiningpressureof�5MPa is reached. If duringconfinementor later
extension a newcontact between amatrix and layer particle is formed
(e.g. due to shear displacement) this contact is assigned a ‘smooth-
joint’model, otherwise spurious contact forceswoulddevelopdue to
asperity lockup. After confinement, particles touching the lateral
boundaries and their neighbours (black particles in Fig. 2) are
assigned a horizontal outward finite velocity of 0.005 m/s (this finite
velocity is reached incrementally in order to minimize dynamic
effects) and the model specific ‘smooth-joint’ friction and cohesion
are assigned. During extension the vertical confinement is main-
tained using a servo-algorithm.

A.2. Mechanical properties of central layer

Average stresses and strains aremeasured in three circular regions
within the central layer using so-called measurement circles (Itasca
Consulting Group, Inc, 2008; Potyondy and Cundall, 2004, see inset
in Fig. A1). These average stress data are used for determining the
macroscopicmechanical properties (modulus, strength) of the central
layer. A plot of average layer-parallel stress within these three
measurement circles vs. model strain is shown in Fig. A1. For each
model, various parameters were determined using the average of the
threemeasurement circle data, and are summarised inTable A1. Initial
uniaxial confinement (sy¼�5MPa) leads to a horizontal pre-stress sp
due to Poisson’s effect (Poisson’s ratio under uniaxial loading and
plane-stress conditions is v¼ sp/sy). Model extension causes an
increase in horizontal stress until thefirst fracture develops. The stress
level at which the first fracture develops is interpreted to be the
minimum layer tensile strength, Tmin, under homogeneous stress
conditions. The fact that the three curves in Fig. A1 are basically
identical until fracturing commences indicates that the stress distri-
bution is initially homogeneous. However, the stress-strain curves
change their slopes when sx becomes tensile, at a pre-strain ep, and
hence suggest that Young’s modulus depends on the sign of the least
compressive stress.Young’smodulus, underplane-stress conditions, is
the slope of the stress-strain curve, Dsx/Dex. When all stresses are
compressive, the secant Young’s modulus is Ep¼�sp/ep, whereas
when the least compressive stress is tensile Young’s modulus is
Ef¼ Tmin/De, where De¼ e� ep. We use the latter modulus for fitting
the shear lag model.

It is important to note that formulation of the shear lag model
described in Appendix B predicts zero stress for zero matrix strain. In
thefittingprocedure given inAppendixCwe thereforeuse em¼ e� ep,
i.e. the pre-strain is subtracted from the model strain. In the plots
shown inFig. 5, this pre-strain is thenadded to the shear lagprediction.
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Fig. A1. Plot of averagehorizontal stresswithin threemeasurement circles (see inset) vs.
model strain (for themodelwith m¼ 0.3). After uniaxialmodel confinement a pre-stress,
sp exists. The strain at which the horizontal stress within the central layer becomes zero
is the pre-strain ep. Tmin is the minimum tensile layer strength and De is the strain
difference used for calculating the layer secant Young’s modulus, i.e. Ef¼ Tmin/De.



Table A1
Material and model parameters obtained frommeasurement circles (see Fig. A1) for
four models with different interfacial friction coefficients, m.

m ep sp (MPa) Ep (GPa) Ef (GPa) T (MPa)

0.2 0.0000290 �1.65 56.95 36.18 6.68
0.3 0.0000298 �1.66 55.79 35.35 6.38
0.5 0.0000293 �1.68 57.30 36.47 6.25
0.8 0.0000295 �1.66 56.11 35.42 6.62
Mean 0.0000294 �1.66 56.54 35.85 6.48
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Appendix B. Shear lag model

B.1. Geometry and boundary conditions

Consider a periodically layered sequence of alternating ‘soft’
(so-called ‘matrix’) and ‘strong’ materials which are fractured
(Fig. B1a). The matrix layers have a thickness d and a shear
modulus Gm. The fractured layers have a thickness t and a Young’s
modulus Ef. The fractures are equally spaced with a spacing s, but
because of the symmetry of the problem we use the half-length L
throughout this appendix.

The boundary conditions acting on a ‘unit cell’ are schemati-
cally illustrated in Fig. B1a. A layer-parallel axial stress is induced
in the system by displacing the ends of the matrix layers, while
keeping the fractures traction free. The average strain in the
matrix is em. This boundary condition leads to a layer-parallel
tensile stress within the fracture-bound block, with a maximum in
the centre. An interfacial shear stress also develops, as indicated
with half-arrows in Fig. B1a, which decreases in a vertical direc-
tion and becomes zero along horizontal lines centred in the matrix
layers. Because the shear stresses acting along one interface are
opposite in sign on either side of the fracture-bound block
(Fig. B1a), the shear stress along a vertical line centred in the block
must vanish.

To approximate this 2-D problem, stresses and strains are
interpreted in an average, rather than local sense, so that the shear
lag model is a 1-D approximation. The average horizontal, or layer-
parallel, normal stress sxwithin a layer of thickness t centred at y0 is
defined as (e.g. Iyer and Podladchikov, 2009)

sxðxÞ ¼ 1
t

Zy0þt=2

y0�t=2

sxxðx; yÞdx (B.1)

where sxx is the horizontal normal stress component. The shear
stress within the fractured layer varies approximately linear with y
(Fig. B1a). Mechanical equilibrium demands that a gradient in
horizontal normal stress, dsx/dx, within the layer is balanced by an
interfacial shear stress, sx.

dsx
dx

þ stopx � sbotx
t

¼ 0 (B.2)

The superscripts refer to the shear stress acting on the top and
bottom layer interface. If the top and bottom interfacial shear
stresses are identical in magnitude, but opposite in sign, then Eq.
(B.2) can be written as

dsx
dx

¼ �2sx
t

(B.3)

A positive normal stress gradient hence leads to a negative
(counter-clockwise) shear stress along theupper interface (Fig. B1a).

We assume that the maximum interfacial shear stress, s, is given
by a Coulomb limit
jsj ¼ sym; (B.4)

where sy is the normal stress acting on the interface and m is the
interfacial friction coefficient.

B.2. No-slip solution

Cox (1952) derived a solution that conforms with the boundary
conditions outlined above. In the absence of interfacial slip the
average layer-parallel normal stress within a fracture-bound
block is

sxðxÞ ¼ Efem

�
1� coshðbðL� xÞÞ

coshðbLÞ
�

(B.5)

where b is the load transfer parameter. For the sake of mathe-
matical brevity the origin (x¼ 0) in Eq. (B.5) is located at the left-
hand fracture. If the shear stress in the matrix decreases linearly in
a vertical direction from its maximum value at the interface to zero
mid-way between two fracturing layers (Fig. B1a) then b is (Ji et al.,
1998)

b ¼
ffiffiffiffiffiffiffiffiffiffi
8Gm

Ef td

s
(B.6)

where Gm is the shear modulus of the matrix. The actual shear
stress may decrease non-linearly and various analytical solutions
have been postulated to take a non-linear shear stress decay into
account (Ji and Saruwatari, 1998; Jain et al., 2007). We prefer,
however, to determine the value of b in our models directly as
outlined in Appendix C.

The maximum layer-parallel normal stress within the fractured
block, smax, occurs in the centre (x¼ L) and given by

smax ¼ Efemð1� sechðbLÞÞ (B.7)

The shear stress acting on the interface, sx, can be obtained
by differentiating Eq. (B.5) and substituting the result into Eq.
(B.3).

sxðxÞ ¼ t
2
Efemb

sinhðbðL� xÞÞ
coshðbLÞ (B.8)

where the absence of the minus sign indicates that Eq. (B.8)
describes the shear stress distribution along the lower interface.
The maximum interface shear stress, smax, occurs at the end of the
fractured block (x¼ 0) and is

smax ¼ t
2
Efemb

sinhðbLÞ
coshðbLÞ (B.9)

Average normal stress and interfacial shear stress profiles
that were calculated using these solutions are plotted in
Fig. B1b(i).

If we assume that the average normal stress in the fracturing
layer cannot exceed the tensile strength, T, then a limiting, or
critical half-length Lc, below which no fracturing can occur at
a particular matrix strain, exists (Lloyd et al., 1982). The critical half-
length, Lc, can then be obtained by replacing smax in Eq. (B.7) with T
and solving for L

Lnoslipc ¼ 1
b
asech

 
1� T

Efem

!
(B.10)



Fig. B1. 1-D shear lag model used for predicting fracture and interfacial slip evolution in discontinuum models. (a) Periodically layered sequence comprised of fractured layers with
thickness t interbedded with unfractured matrix layers of thickness d. The spacing of the fractures is s, but due to the symmetry of the problem the half-length L is used. The
boundary conditions acting on a ‘unit cell’ are also shown. (b) Average horizontal normal stress, sx, and interfacial shear stress, sx, profiles at different matrix strains, em. The dots
indicate the transition points from the slip to no-slip region. (i) No-slip solution, just at the onset of slip (em¼ 0.00024 according to Eq. (B.11)). (ii) Partial-slip solution (em¼ 0.0006).
(iii) Full-slip solution (em¼N). (c) Plot of critical half-length, Lc (black curve), and length of slip region, xt (grey curve), vs. log10 matrix strain, em. The onset of fracture and the onset
of interfacial slip are indicated as vertical lines. The full-slip solution (Eq. (B.14)) is plotted as horizontal dashed line. The no-slip solution (Eq. (B.10)) is plotted as thin dashed line for
comparison. The parameters used for obtaining the results in (b) and (c) are: t¼ d¼ 0.25 m, Ef¼ 10 GPa, Gm¼ 1 GPa, s¼ 1 MPa. The b-value is calculated using Eq. (B.6). In (b) the
half-length L¼ 1 m is kept constant, whereas in (c) the tensile strength T¼ 1 MPa is constant.
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where the superscript noslip denotes that this is the critical half-length
for a welded interface. For infinite matrix strain Eq. (B.10) becomes

lim
em/N

Lnoslipc ¼ 0

which is clearly not possible, but sometimes used as an argu-
ment against the shear lag model (Bai et al., 2000). However,
interfacial slip will occur if the maximum interface shear
stress, smax, exceeds the shear strength of the interface, s (Ji
et al., 1998; Jain et al., 2007). The matrix strain at which
interfacial slip commences can be obtained by substituting the
critical half-length for a welded interface (Eq. (B.10)) as L into
Eq. (B.9) and replacing smax with s. Solving for em and
simplifying gives
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esliponsetm ¼ 4s2 þ ðTbtÞ2
2EfTðbtÞ2

(B.11)

From this point onwards the interface is comprised of two
regions (I) slip, or plastic, regions near the fractures and (II) a no-
slip, or elastic, region in the centre of the fractured block (Fig. B1b
(ii)). In the limit, the entire interface will be sliding (Fig. B1b(iii)).

The critical half-length at the onset of slip can be obtained by
substituting the matrix strain at the onset of slip given by Eq. (B.11)
into Eq. (B.10) and is

Lsliponsetc ¼ 1
b
asech

 
4s2 � ðTbtÞ2
4s2 þ ðTbtÞ2

!
(B.12)

Eq. (B.12) indicates that the interfacial shear strength s must
have a certain minimum value (the numerator in the inverse
hyperbolic secant term must be >0) otherwise the entire interface
will slip as soon as the first fracture appears and no further fracture
is possible.

s >
Tbt
2

(B.13)

This inequality can alternatively be obtained by the condition
that the matrix strain at the onset of fracture must be less than the
strain at the onset of interfacial slip (Eq. (B.11)), i.e. esliponsetm > T=Ef .

B.3. Full-slip solution

If the normal stress acting on the interface, sy, remains constant
and uniform while slip occurs, then the shear stress acting on the
interface is also constant and given by Eq. (B.4). As a consequence
the gradient of the layer-parallel normal stress within the fracture
layer is constant, i.e. the layer-parallel stress profile is a triangle (Eq.
(B.3); see Fig. B1b(iii)). The normal stress is, however, limited by the
tensile strength, T, so that dsx/dx in Eq. (B.3) can be replaced by T/L.
The critical half-length of the fractured block, below which no
further fracture can occur, is therefore given by

Lfullslipc ¼ Tt
2s

(B.14)

Eq. (B.14) is known as Price’s model in Earth Sciences (Price,
1966; Mandl, 2005) and as KellyeTyson equation in Material
Sciences (Kelly and Tyson, 1965; Tripathi and Jones, 1998).

B.4. Partial-slip solution

It is clear that the twomodels outlined above, i.e. the no-slip and
the full-slip solution, are end-member scenarios. The onset of
interfacial slip is derived above and given by Eq. (B.11). An increase
in extension leads to a progressive increase of the length of the slip
region until, in theory, the entire interface is sliding.

Here we use a Piggott model (Piggott, 1978; Huang and Young,
1995; van den Heuvel et al., 1997) where a linear stress build-up
(Eq. (B.3)) in the slip region is immediately followed by an elastic
stress build-up according to Cox’s shear lag model (Eq. (B.5)).

sxðxÞ ¼
(2s

t x ¼ gx 0 � x � xt
gxt þ

�
Efem � gxt

��
1� coshðbðL�xÞÞ

coshðbðL�xtÞÞ
�

xt � x � L

(B.15)

where xt is the transition point from the slip to no-slip region and g
is the normal stress gradient in the slip region, which is a constant,
and used here for brevity. Eq. (B.15) is, again, given for the left-hand
side of a fracture-bound block with the left-hand fracture located at
x¼ 0. Notice that Eq. (B.15) becomes Cox’s solution (Eq. (B.5)) if
xt¼ 0 and that the full-slip solution (Eq. (B.14)) is obtained when
em¼N.

The maximum layer-parallel normal stress occurs at the centre
of the bonded region, at L, and is given by

smax ¼ gxt þ
�
Efem � gxt

��
1� sechðbðL� xtÞÞ

�
(B.16)

Analogous to the no-slip case, the shear stress acting on the
interface, sx, can be obtained by differentiating Eq. (B.15) and
substituting the result into Eq. (B.3).

sxðxÞ ¼
(s 0� x� xt

t
2

�
Efem � gxt

�
b
sinhðbðL� xÞÞ
coshðbðL� xtÞÞ xt � x� L (B.17)

The maximum interfacial shear stress, smax, occurs at the end of
the bonded region (x¼ xt) and is given by

smax ¼ t
2

�
Efem � gxt

�
b
sinhðbðL� xtÞÞ
coshðbðL� xtÞÞ (B.18)

The critical half-length is determined by limiting the maximum
normal stress given by Eq. (B.16) by the tensile strength T and
solving for L.

Lpartialslipc ¼ xt þ 1
b
asech

 
T � Efem
gxt � Efem

!
(B.19)

For a cohesionless interface (Eq. (B.4)) the unknown xt can be
evaluated by assuming stress continuity at the transition point, for
which the maximum interface shear stress (Eq. (B.18)) is equal to
the shear strength s. For a cohesive interface stress continuity
cannot be justified and an interfacial shear stress jump and an
associated increase of the average layer-parallel normal stress
gradient occurs (Huang and Young, 1995; van den Heuvel et al.,
1997). In the present study, however, the effect of cohesion is not
investigated and we therefore assume that the interfacial shear
strength is provided by friction only.

Taking s as smax in Eq. (B.18) and substituting L, as given by Eq.
(B.19), gives after rearrangement.

2s� bt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgxt � TÞ

�
gxt þ T � 2Efem

�r
¼ 0 (B.20)

Unfortunately a closed form solution for Eq. (B.20) does not exist
and therefore xt has to be determined numerically. The result can
then be substituted into Eq. (B.19) and the critical half-length for
the partial-slip case can be obtained. Average normal stress and
interfacial shear stress profiles that were calculated using these
solutions are plotted in Fig. B1b(ii).
B.5. Implementation

The critical half-length, Lc and, if slip occurs, the length of the
slip region, xt, can be calculated as a function of matrix strain using
a simple computer program (aMATLAB script can be obtained upon
request from the corresponding author). The input parameters are
the layer thicknesses, t and d, the elastic properties, Ef and Gm, the
layer tensile and interface shear strengths, T and s, respectively, and
the matrix strain, em. The algorithm is structured as follows:

If Efem> T and s> Tbt/2 (Eq. (B.13)) then
If em � esliponsetm (Eq. (B.11)) then
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Calculate Lnoslipc (Eq. (B.10)), xt¼ 0
Else

Determine xt numerically (Eq. (B.20)) and calculate
Lpartial slipc (Eq. (B.19))

EndIf
EndIf

The first if-statement checks (i) whether the strain is high
enough to exceed the tensile strength of the layer and (ii) whether
the interfacial shear strength is high enough. The second if-
statement checks whether the strain is less than the onset of
interfacial slip or not. If no-slip occurs, then the no-slip solution is
used, otherwise the partial-slip solution is used for calculating Lc
and xt.

A plot of Lc and xt vs. em is shown in Fig. B1c. As expected, the
critical half-length decreases with increasing strain and asymp-
totically approaches the full-slip solution. The length of the slip
region gradually increases and eventually becomes equal to the
full-slip half-length. If interfacial slip were inhibited, then Lc
asymptotically approaches 0.

Appendix C. Fitting shear lag model to numerical modelling
results

An approximation of the average stress, as given by Eq. (B.1),
within the particle model is obtained by interpolating the hori-
zontal particle stress components, spxx, on a square-grid with
a spacing Dx ¼ Dy ¼ 0:0025 and applying Simpson’s rule

sxðxÞya
1
t

XN
n¼0

spxx

�
y0 �

t
2
þ Dy

2
þ Dyn

�
;where N ¼ t

Dy
� 1

(C.1)

where a is the fraction of area occupied by particles (a¼ 0.84 in our
models).

For each fracture-bound block a shear lagmodel with partial slip
(Section B.4) is fitted to the approximate average stress data to
obtain an estimate for the load transfer parameter b (Fig. 3). First
the magnitude and location of the maximum horizontal normal
stress smax is calculated by fitting a 2nd-order polynomial to six
consecutive points. The stress profiles are often asymmetric, hence
the best-fit b-value is calculated for the right and left-hand side
separately. Each side has a length of L, which is comprised of a slip
region with length xt and a no-slip region with length mL, where
m¼ 1� xt/L.

Again, we assume stress continuity from the slip to no-slip
region, so that the maximum shear stress at the ends of the no-slip
region smax is equal to the interface shear strength s. Using 2s/t
instead of g andmL instead of (L� xt) in Eq. (B.18) and solving for xt
gives

xt ¼ Efemt
2s

� coshðmLbÞ
bsinhðmLbÞ (C.2)

Substitution of Eq. (C.2) into Eq. (B.16) and using again mL
instead of ðL� xtÞ gives

Efem � 2s
tb

coshðmLbÞ sechðmLbÞ
sinhðmLbÞ � smax ¼ 0 (C.3)

The b-value can be determined numerically from Eq. (C.3) and xt
can then be calculated using Eq. (C.2). The best-fit b-value is
obtained by iteratively varying m in the range of 0.0e1.0 and
minimising the sum-of-squares sx differences between model
profile and shear lag equation (Eq. (B.15)).
It is important to note that the condition smax¼ s can only be
justified if interfacial slip actually occurs (prior to interfacial slip
smax< s). In addition b is poorly constrained when slip occurs over
almost the entire length of a fracture-bound block (e.g. at fracture
saturation). Hence the best-fit b-value used for predicting the
fracture and slip evolution (Fig. 5) is the arithmetic mean of all best-
fit b-values where 0.1< xt/L< 0.9. The best-fit b-values for all four
models are provided in Fig 5a.

Appendix. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jsg.2011.01.0085.
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